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Cascading failures in coupled map lattices
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Large cascades triggered by initial shocks are common in complex networks. Coupled map lattices have
been widely used over the past decades as dynamical models of complex systems. Here we investigate
cascading failures in coupled map lattices with different topologies. We find that cascading failures are much
easier to occur in small-world and scale-free coupled map lattices than in globally coupled map lattices.
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I. INTRODUCTION i=1,2,...N (1)

Cascading failures have been observed in many real comy ey (1) is the state variable of thieh node at théth time
plex networks. The largest blackout in U.S. history took

. - step. The connection information among thenodes is
place on 14 August 2003, a typical example of cascadm%. by the adi A= (& If th )
failure in electrical power grids. How can initial shocks lead lven Dy the adjacency matri = (@) ) ere 1s an
to the entire networks to collapse and what are the features &d9€¢ between nodeand nodej, thena; =a; =1; otherwise,
cascading failures in different networks? Although the ten-%j=&;i=0. Here we assume that no two different nodes can
dency for cascading failures in complex networks is far fromhave more than one edge in between and no node can have
completely understood, it is necessarily influenced by bottn edge with itself. Therefore is a symmetric 0-1 matrix
the structure of a network and the dynamic behavior of netwith diagonal elements zerd(i) is the degree of node
work components. In particular, since the discovery of smallwhich is defined as the number of edges incident to riode
world and scale-free features of complex netwofks?], e e€(0,1) represents the coupling strength. The functfon
some researchers have investigated the relationship betwedsfines the local dynamics which is chosen in this work as
the cascading failure phenomenon and topologies of complethe chaotic logistic mapf(x)=4x(1-x). We use absolute
networks[3-7]. _ _ . ~value notation in Eq(1) to guarantee that each state is al-
Coupled map latticeéCML's) have been widely investi- \yays non-negative.

gated over the past decades to model the rich space-time nggdei is said to be in amormal stateat themth time step
dynamical behaviors of complex sy_ster_[i?z;. In most of 0<x()<1, t=<m. On the other hand, if €x(t)<1,
Iese reseaches, a soupld map afice i sl SSSUTEC =1, hen nod s said to bl at e

9 b 9 ping time step and we assume in this case th@j =0, t>m. If

neighbor couplinyg topology. Recently, some researchers e . e :
have begun to investigate dynamical behaviors such as syf€ initial state of each node in networ) is in the interval

chronization on CMLs with small-world or scale-scale cou- (0; 1) and there is not any external perturbation, themodes
pling topologies[9]. in the network will be in no_rmal states foreve_r.

In this work, we propose a cascading failure model based In order to s_how how an initial shock on a single node can
on CML’s. We investigate the cascading failure in the modeitrigger cascading failure, we add an external perturbafon
with different coupling topologies, including global cou- =1 to a nodec at themth time step as follows:
pling, small-world coupling, and scale-free coupling. We find

that the breakdown of a single node is sufficient to trigger an X(m) = | (1 -&)f(x(m- 1))

entire network to collapse if the amplitude of the external

perturbation on the single node is larger than a threshold. N

Furthermore, we find that the threshold for a globally +e > agf(x(m-1)/kc)| +R. 2)
coupled map lattice is much larger than that for a small- iigee

world or scale-free coupled map lattice. This implies that ) ) ) i
cascading failures occur much easier in small-world and" this case, node will be failed at themth time step and we

scale-free networks than in global coupling networks. have x,(t) =0 for all t>m. At the (m+1)th time step, the
states of those nodes that are directly connected with node

Il. CASCADING FAILURE MODEL BASED ON COUPLED will be affected byx.(m) according to Eq(1), and the states
MAP LATTICES of these nodes may also be larger than 1 and thus may lead to
a new round of node failures. The question we are interested
N in is how many nodes will be failed eventually?
) In following simulations, initial states of the nodes in
x(t+1) =1 (1-e)f(x() +e 2 &, fOgO)/kaA) | coupled map latticg1) are all chosen randomly from the
.= interval (0, 1). A perturbationR=1 is added to a node at
the tenth time step. The cascading failure process can be
*FAX: 86-21-62932344. Electronic address: xfwang@sijtu.edu.crcharacterized by(t) which is defined as the total number of

We consider a CML of\ nodes described as follows:
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FIG. 1. The sizel of cascade in a global coupled map lattice () €
with N=2000 ands=0.6, triggered by adding an initial sho&kto 70 —
an arbitrarily chosen node. The data are averages over 100 random AR, &
realizations. 6ol -0 R, Pl
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failed nodes in a network before the+1)th time step.l 50 e_/-“’ 1
=lim,_., I(t) measures the size of cascade in the network. o i
40 @/‘/
I1l. CASCADING FAILURE IN GLOBALLY COUPLED 30()"/
MAP LATTICES
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In a globally coupled network, each node is connected (;')0 15 20 2'51350N3'5 40 45 50

with all the other nodes in the network. Here, a perturbation

R=1 is added to a randomly selected node in a globally FiG. 2. Thresholds for cascading failures in globally coupled
coupled map latticél) at the tenth time step. Figure 1 shows map Jattices witiN=2000 and:=0.6.R.; andR, are derived from
the sizel of the cascade as a function of the ampliti®lef  the data averages over 100 random realizati®s.is computed

a perturbation in a globally coupled map lattice with  according to Eq(6). Below thresholdR,;, cascading failure will not
=2000 ande=0.6. We find that for any given sizé of the  occur. Above threshol®;, (R.,), all the nodes in the network will
network and coupling strength € (0,1), there exist two be failed. The thresholds are decreasing functions of the coupling
thresholdsR,; =R (e,N) andR,=R.,(e,N) (R;<R), as  strengthe (a) and increasing functions of network sike(b).

shown in Fig. 2. Below threshol®,—i.e., 1I<R<=R,—I

=1, which implies that no other nodes will be failed. How- N

ever, asR increases fronR,, the sizel of the cascade in- f(x(m)) + LE [f(x;(m)) = £(x(m))]

creases very rapidly. Once the amplitudeof the perturba- 13

tion reaches another threshoRl,—i.e., R=R,—then all N
other nodes in the network will be failed in the next time step = f(x(m)) + & S [F(x (M) = F(x(m)]
(I=N). In Fig. 1, the two thresholds aR,; ~29.4 andR,, ' N-1)5 !
~41.4. j#i
Mathematically, the thresholg,, can be estimated as fol-
L?]\;.Vts All other nodes failed in thén+ 1)th time step means + [f@(m)) _ f(X,(m))] + [f(Xc(m)) _ f(X_C(m))]
e N
&
x(m+1) = | f(x(m)) + N—_lz [f(m) = fOx(m) ]| =1, sL1+o 1[1‘(><c(m)) = f(xc(m))]
j=1
€
=1+ f(x(m)). (5)
i#c (3
Note that Therefore, Eq(3) holds if
f(x(M)) =4x(1 -x.) < -4R(R-1) < 0. (4) e 4eR(R-1)
1+N_1f(Xc(m))$l—W$—l,
Denotex.(m) as the state of node at the mth time step
without external perturbatioR. We have G<x.(m)<1. It
can be derived that which leads to
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FIG. 4. The sizel of cascade in a small-world coupled map

FIG. 3. The numbeil of time steps required to achieve global lattice with N=2000,K=20, p=0.05, ands=0.6, triggered by add-
cascading failure in a small-world coupled map lattice as a functioring an initial shockR to an arbitrarily chosen node. The data are
of the rewiring probabilityp. averages over 100 random realizations.

1 2(N=1) networks by their characteristic path lendtfp) and cluster-
R=R,= —(1 +14/1 +—>. (6) ing coefficientC(p). L(p) measures the typical separation
2 € between two nodega global property and C(p) measures
It can be seen from Fig. 2 that the threshBlg estimated the cliquishness of a typical neighborho@dlocal property.
from Eq. (6) fits very well with the thresholdR,, derived  They found that, for smalp (0<p<1), L(p) drops rapidly
from simulations. while C(p) remains almost unchanged. The ensuing semiran-
It should be noted that in the thermodynamic lilht dom lattice is denoted a small-world network. In a WS
— oo, thresholdsR,; and R, increase to infinity{Fig. 2b)].  small-world network, most nodes only connect to their
This implies that a large-scale globally coupled map lattice isrearest-neighbor nodes but a few nodes have long-range con-
very robust against a large but local external perturbationnections with relatively distant nodes. The total number of
Although globally coupled network models capture some im4ong-range connections in the network is subjecpiK/2.
portant features of real networks, it is easy to notice their We find that it is much easier to trigger global cascading
limitations: a globally coupled network with nodes has failure in a small-world coupled map lattice than in a nearest-
N(N-1)/2 edges, while most large-scale real networks areeighbor coupled map lattice. In simulations, we tdke
sparse; that is, the number of edges in a real network i52000,K=20,R=6, ande=0.6. In Fig. 3 we plot the num-

generally of ordeN rather tharN. berT of time steps required to achieve global cascading fail-
ure in a small-world coupled map lattice as a function of the
IV. CASCADING FAILURE IN SMALL-WORLD COUPLED rewiring probability p. We find thatT<7 for p=0.05 and
MAP LATTICES T=4 for 0.32<p=1. Figure 4 plots sizé of the cascade as

a function of the amplitud® of perturbation withp=0.05,

A widely studied, sparse, and regular network model isyhen a randomly selected node is failed at the tenth time
the nearest-neighbor coupled network which consist®of step due to the perturbation. We find that all the nodes in the
nodes arranged in a ring, where each nbieadjacent to its  network will be failed in a few steps R>5.5. For example,
neighboring nodes=1,2,..,K/2, with K being an even in-  for R=6, all the nodes in the network are failed after 7 steps
teger. In simulations, we take=20,£=0.6, andN=1000. A (Fig. 5). This implies that a few long-range connections are
perturbationrR=1 is added to a random selected node at theanough for a single node failure to trigger large-scale net-
mth time step. We find that for a large perturbati®>6),  work collapse in a few steps.
the number of failed nodes before ttra+t+1)th time step

is aboutI(m+t)=Kt+1. Therefore, it requires abolN/K 2000
time steps for the cascading failure of all the nodes in a
nearest-neighbor coupled map lattice aNdK —o as N 1600
— o0, However, in simulations, we cannot produce the whole
cascading process due to the occurrence of arithmetic over- £ 1000
flow.
Many real networks have special features, which are a 500
blend of those of completely regular networks and com-
pletely random networks. To describe the transition from a ob
completely regular network to a completely random one, 10 12 14 16 18

Watts and Strogatz introduced the small-world network !

model[1]. Starting from a nearest-neighbor coupled network F|G. 5. Cascading failure process in a small-world coupled map
with N nodes arranged on a ring akdedges per node, they |attice withN=2000,K=20,=0.6,p=0.05, andR=6, triggered by
rewire each edge at random with probabiljly Watts and  adding an initial shoclR to an arbitrarily chosen node at tenth step.
Strogatz(WS) quantified the structural properties of theseAll the nodes in the network are failed after 7 steps.
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V. CASCADING FAILURE IN SCALE-FREE COUPLED
MAP LATTICES

One significant recent discovery in the field of complex
networks is the observation that the connectivity distribu-
tions of a number of large-scale and complex networks have
the power-law formP(k) ~k™?, whereP(k) is the probability
that a node in the network is connectedktother nodes and
vy is a positive real number. Since power laws are free of
characteristic scale, such networks are called “scale-free net-
works.” Barabasi and AlbeiBA) argued that there are two
generic aspects of real networks in the scale-free structure
model, which are growth and preferential attachmgijt
They have referred to that network continuously grown by
the addition of new vertices and new vertices are preferen-
tially attached to existing vertices with high numbers of con-
nections. The BA scale-free model is constructed as follows ~ 1000

(2]

2000

1500

(i) Growth: Starting with a small numbdm) of nodes, at
every time step we add a new node witit<m,) edges.
(i) Preferential attachmentWhen choosing the nodes to
which the new node connects, we assume that the probability (b)
IT that a new node will be connected to a node depends on
the connectivity of that node, such that FIG. 6. The size of cascade in a scale-free coupled map lattice,
triggered by adding an initial shock to an arbitrarily chosen nagle
(k) = ki / > ;. or a node with largest degreb). The data are averages over 100
i

random realizations.

After | time steps the model leads to a scale-free network i i
with N=1+m, nodes andnl edges. In simulations, we take network collapse in a scale-free network than in a globally
Me=m. ' coupled network. Figure 7 shows the cascading failure pro-

A scale-free network is inhomogeneous in nature: mosf€SS In @ scale-free coupled map lattice witix3 and R

nodes have very few connections but a small number of par- 10. . .
ticular nodes have many connections. It is this inhomoge- 1he above results about cascading failures on the BA

neous feature that makes the connectivity of a scale-free netcale-free networks are congistent with the recent discoveries
work error tolerant but vulnerable to deliberate attagg@. ~ ©f Fortunato[11], who studied damage spreading for the

More precisely, the connectivity of such networks is highly Krause-Hegseimann opinion dynamics on BA scale-free net-
robust against random failures—that is, random removal o/OrKS. Fortunato distinguished three phases in the confi-

nodes; yet it is extremely fragile to attacks, that is, to specificlénce bound space, corresponding to zero, partial, and total
removal of the most highly connected nodes. damage, respectively. Furthermore, he found that the amount

We investigate cascading failures in BA scale-free®f damage depends on the degree of the damaged node
coupled map lattices with=2000 ands=0.6. To take into but the thresholds for damage spreading and saturation do

account the inhomogeneous feature of a scale-free networROl Pecause of the small-world effect of BA scale-free
we adopt two different triggering strategies: random attack'etWOrks[11].

and deliberatgdegree-basgdattack. In the random attack

case, an initial shock is added to a randomly chosen node. In 2000 P
the deliberatgdegree-basgdattack case, an initial shock is :

added to the node with largest degree in the network. Figures 1500 -6~ random
6(a) and &b) plot the size of cascade in a scale-free coupled : % _degree
map lattice as a function of the amplitude of the perturbation € 1000 *

under random attack and deliberate attack, respectively. One d

can see that there is no sharp difference between random and 500

deliberate attacks. In each case, there exists a similar thresh-
old R5,,. Below the threshold, at most a few nodésss than b o
10 in our simulationswill be failed. As the value oR in- o 12 14 16 18 20
creases from the threshold, the sizef cascade increases
very sharply to the siz&l of the network. Furthermore, the  FiG. 7. Cascading failure process in a scale free coupled map
threshoIdRBA is much smaller than the threshdRil for a lattice with N=2000,¢=0.6, m=3, andR=10, triggered by adding
globally coupled map lattice with the same sideand cou-  an initial shockR to an arbitrarily chosen node or a node with
pling strengthe. This implies that it is much easier to trigger largest degree at tenth step.
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VI. CONCLUSION world or scale-free coupled map lattice in a few steps. We
In this work, we studied cascading failures in couplednoPe this work might shed some new light on the analysis

map lattices with different coupling topologies, including @d control of cascading failures in real-world complex net-

global coupling, nearest-neighbor coupling, small-world cou-VOrks-

pling, and scale-free coupling. We found that a sufficiently

Iarge perturbation on a single node can lead to cascading ACKNOWLEDGMENTS
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