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Large cascades triggered by initial shocks are common in complex networks. Coupled map lattices have
been widely used over the past decades as dynamical models of complex systems. Here we investigate
cascading failures in coupled map lattices with different topologies. We find that cascading failures are much
easier to occur in small-world and scale-free coupled map lattices than in globally coupled map lattices.

DOI: 10.1103/PhysRevE.70.056113 PACS number(s): 89.75.Hc, 89.20.Hh, 05.45.Xt

I. INTRODUCTION

Cascading failures have been observed in many real com-
plex networks. The largest blackout in U.S. history took
place on 14 August 2003, a typical example of cascading
failure in electrical power grids. How can initial shocks lead
to the entire networks to collapse and what are the features of
cascading failures in different networks? Although the ten-
dency for cascading failures in complex networks is far from
completely understood, it is necessarily influenced by both
the structure of a network and the dynamic behavior of net-
work components. In particular, since the discovery of small-
world and scale-free features of complex networks[1,2],
some researchers have investigated the relationship between
the cascading failure phenomenon and topologies of complex
networks[3–7].

Coupled map lattices(CML’s) have been widely investi-
gated over the past decades to model the rich space-time
dynamical behaviors of complex systems[8]. In most of
these researches, a coupled map lattice is usually assumed to
have a regular coupling(such as global coupling or nearest-
neighbor coupling) topology. Recently, some researchers
have begun to investigate dynamical behaviors such as syn-
chronization on CML’s with small-world or scale-scale cou-
pling topologies[9].

In this work, we propose a cascading failure model based
on CML’s. We investigate the cascading failure in the model
with different coupling topologies, including global cou-
pling, small-world coupling, and scale-free coupling. We find
that the breakdown of a single node is sufficient to trigger an
entire network to collapse if the amplitude of the external
perturbation on the single node is larger than a threshold.
Furthermore, we find that the threshold for a globally
coupled map lattice is much larger than that for a small-
world or scale-free coupled map lattice. This implies that
cascading failures occur much easier in small-world and
scale-free networks than in global coupling networks.

II. CASCADING FAILURE MODEL BASED ON COUPLED
MAP LATTICES

We consider a CML ofN nodes described as follows:

xist + 1d = Us1 − «df„xistd… + « o
j=1, jÞi

N

ai,j f„xjstd…/ksidU ,

i = 1,2, . . . ,N s1d

wherexistd is the state variable of theith node at thetth time
step. The connection information among theN nodes is
given by the adjacency matrixA=saijdN3N. If there is an
edge between nodei and nodej , thenaij =aji =1; otherwise,
aij =aji =0. Here we assume that no two different nodes can
have more than one edge in between and no node can have
an edge with itself. Therefore,A is a symmetric 0-1 matrix
with diagonal elements zero.ksid is the degree of nodei
which is defined as the number of edges incident to nodei.
«P s0,1d represents the coupling strength. The functionf
defines the local dynamics which is chosen in this work as
the chaotic logistic map,fsxd=4xs1−xd. We use absolute
value notation in Eq.(1) to guarantee that each state is al-
ways non-negative.

Node i is said to be in anormal stateat themth time step
if 0 ,xistd,1, tøm. On the other hand, if 0,xistd,1,
t,m; xismdù1, then nodei is said to befailed at themth
time step and we assume in this case thatxistd;0, t.m. If
the initial state of each node in network(1) is in the interval
(0, 1) and there is not any external perturbation, thenN nodes
in the network will be in normal states forever.

In order to show how an initial shock on a single node can
trigger cascading failure, we add an external perturbationR
ù1 to a nodec at themth time step as follows:

xcsmd = Us1 − «df„xcsm− 1d…

+ « o
j=1& jÞc

N

ac,j f„xjsm− 1d…/kscdU + R. s2d

In this case, nodec will be failed at themth time step and we
have xcstd;0 for all t.m. At the sm+1dth time step, the
states of those nodes that are directly connected with nodec
will be affected byxcsmd according to Eq.(1), and the states
of these nodes may also be larger than 1 and thus may lead to
a new round of node failures. The question we are interested
in is how many nodes will be failed eventually?

In following simulations, initial states of the nodes in
coupled map lattice(1) are all chosen randomly from the
interval (0, 1). A perturbationRù1 is added to a nodec at
the tenth time step. The cascading failure process can be
characterized byIstd which is defined as the total number of*FAX: 86-21-62932344. Electronic address: xfwang@sjtu.edu.cn
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failed nodes in a network before thest+1dth time step.I
; limt→` Istd measures the size of cascade in the network.

III. CASCADING FAILURE IN GLOBALLY COUPLED
MAP LATTICES

In a globally coupled network, each node is connected
with all the other nodes in the network. Here, a perturbation
Rù1 is added to a randomly selected node in a globally
coupled map lattice(1) at the tenth time step. Figure 1 shows
the sizeI of the cascade as a function of the amplitudeR of
a perturbation in a globally coupled map lattice withN
=2000 and«=0.6. We find that for any given sizeN of the
network and coupling strength«P s0,1d, there exist two
thresholdsRc1;Rc1s« ,Nd andRc2;Rc2s« ,Nd sRc1,Rc2d, as
shown in Fig. 2. Below thresholdRc1—i.e., 1,RøRc1— I
=1, which implies that no other nodes will be failed. How-
ever, asR increases fromRc1, the sizeI of the cascade in-
creases very rapidly. Once the amplitudeR of the perturba-
tion reaches another thresholdRc2—i.e., RùRc2—then all
other nodes in the network will be failed in the next time step
sI ;Nd. In Fig. 1, the two thresholds areRc1<29.4 andRc2

<41.4.
Mathematically, the thresholdRc2 can be estimated as fol-

lows. All other nodes failed in thesm+1dth time step means
that

xism+ 1d = U f„xismd… +
«

N − 1o
j=1

N

ff„xjsmd… − f„xismd…gU ù 1,

i Þ c s3d

Note that

f„xcsmd… = 4xcs1 − xcd ø − 4RsR− 1d ø 0. s4d

Denote x̄csmd as the state of nodec at the mth time step
without external perturbationR. We have 0ø x̄csmdø1. It
can be derived that

f„xismd… +
«

N − 1o
j=1

N

ff„xjsmd… − f„xismd…g

= f„xismd… +
«

N − 15o
j=1

jÞi

N

ff„xjsmd… − f„xismd…g

+ ff„x̄csmd… − f„xismd…g + ff„xcsmd… − f„x̄csmd…g6
ø 1 +

«

N − 1
ff„xcsmd… − f„x̄csmd…g

ø 1 +
«

N − 1
f„xcsmd…. s5d

Therefore, Eq.(3) holds if

1 +
«

N − 1
f„xcsmd… ø 1 −

4«RsR− 1d
N − 1

ø − 1,

which leads to

FIG. 1. The sizeI of cascade in a global coupled map lattice
with N=2000 and«=0.6, triggered by adding an initial shockR to
an arbitrarily chosen node. The data are averages over 100 random
realizations.

FIG. 2. Thresholds for cascading failures in globally coupled
map lattices withN=2000 and«=0.6.Rc1 andRc2 are derived from
the data averages over 100 random realizations.Rc2

* is computed
according to Eq.(6). Below thresholdRc1, cascading failure will not
occur. Above thresholdRc2 sRc2

* d, all the nodes in the network will
be failed. The thresholds are decreasing functions of the coupling
strength« (a) and increasing functions of network sizeN (b).
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Rù Rc2
* ;

1

2
S1 +Î1 +

2sN − 1d
«

D . s6d

It can be seen from Fig. 2 that the thresholdRc2
* estimated

from Eq. (6) fits very well with the thresholdRc2 derived
from simulations.

It should be noted that in the thermodynamic limitN
→`, thresholdsRc1 andRc2 increase to infinity[Fig. 2(b)].
This implies that a large-scale globally coupled map lattice is
very robust against a large but local external perturbation.
Although globally coupled network models capture some im-
portant features of real networks, it is easy to notice their
limitations: a globally coupled network withN nodes has
NsN−1d /2 edges, while most large-scale real networks are
sparse; that is, the number of edges in a real network is
generally of orderN rather thanN2.

IV. CASCADING FAILURE IN SMALL-WORLD COUPLED
MAP LATTICES

A widely studied, sparse, and regular network model is
the nearest-neighbor coupled network which consists ofN
nodes arranged in a ring, where each nodei is adjacent to its
neighboring nodes,i =1,2,…,K /2, with K being an even in-
teger. In simulations, we takeK=20,«=0.6, andNù1000. A
perturbationRù1 is added to a random selected node at the
mth time step. We find that for a large perturbationsR.6d,
the number of failed nodes before thesm+ t+1dth time step
is about Ism+ td=Kt+1. Therefore, it requires aboutN/K
time steps for the cascading failure of all the nodes in a
nearest-neighbor coupled map lattice andN/K→` as N
→`. However, in simulations, we cannot produce the whole
cascading process due to the occurrence of arithmetic over-
flow.

Many real networks have special features, which are a
blend of those of completely regular networks and com-
pletely random networks. To describe the transition from a
completely regular network to a completely random one,
Watts and Strogatz introduced the small-world network
model[1]. Starting from a nearest-neighbor coupled network
with N nodes arranged on a ring andK edges per node, they
rewire each edge at random with probabilityp. Watts and
Strogatz(WS) quantified the structural properties of these

networks by their characteristic path lengthLspd and cluster-
ing coefficientCspd. Lspd measures the typical separation
between two nodes(a global property) and Cspd measures
the cliquishness of a typical neighborhood(a local property).
They found that, for smallp s0,p!1d, Lspd drops rapidly
while Cspd remains almost unchanged. The ensuing semiran-
dom lattice is denoted a small-world network. In a WS
small-world network, most nodes only connect to their
nearest-neighbor nodes but a few nodes have long-range con-
nections with relatively distant nodes. The total number of
long-range connections in the network is subject topNK/2.

We find that it is much easier to trigger global cascading
failure in a small-world coupled map lattice than in a nearest-
neighbor coupled map lattice. In simulations, we takeN
=2000,K=20, R=6, and«=0.6. In Fig. 3 we plot the num-
berT of time steps required to achieve global cascading fail-
ure in a small-world coupled map lattice as a function of the
rewiring probability p. We find thatTø7 for pù0.05 and
T;4 for 0.32øpø1. Figure 4 plots sizeI of the cascade as
a function of the amplitudeR of perturbation withp=0.05,
when a randomly selected node is failed at the tenth time
step due to the perturbation. We find that all the nodes in the
network will be failed in a few steps ifR.5.5. For example,
for R=6, all the nodes in the network are failed after 7 steps
(Fig. 5). This implies that a few long-range connections are
enough for a single node failure to trigger large-scale net-
work collapse in a few steps.

FIG. 3. The numberT of time steps required to achieve global
cascading failure in a small-world coupled map lattice as a function
of the rewiring probabilityp.

FIG. 4. The sizeI of cascade in a small-world coupled map
lattice with N=2000,K=20, p=0.05, and«=0.6, triggered by add-
ing an initial shockR to an arbitrarily chosen node. The data are
averages over 100 random realizations.

FIG. 5. Cascading failure process in a small-world coupled map
lattice withN=2000,K=20,«=0.6,p=0.05, andR=6, triggered by
adding an initial shockR to an arbitrarily chosen node at tenth step.
All the nodes in the network are failed after 7 steps.
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V. CASCADING FAILURE IN SCALE-FREE COUPLED
MAP LATTICES

One significant recent discovery in the field of complex
networks is the observation that the connectivity distribu-
tions of a number of large-scale and complex networks have
the power-law formPskd,k−g, wherePskd is the probability
that a node in the network is connected tok other nodes and
g is a positive real number. Since power laws are free of
characteristic scale, such networks are called “scale-free net-
works.” Barabási and Albert(BA) argued that there are two
generic aspects of real networks in the scale-free structure
model, which are growth and preferential attachment[2].
They have referred to that network continuously grown by
the addition of new vertices and new vertices are preferen-
tially attached to existing vertices with high numbers of con-
nections. The BA scale-free model is constructed as follows
[2].

(i) Growth: Starting with a small numbersm0d of nodes, at
every time step we add a new node withmsøm0d edges.

(ii ) Preferential attachment:When choosing the nodes to
which the new node connects, we assume that the probability
P that a new node will be connected to a node depends on
the connectivity of that node, such that

Pskid = kiYo
j

kj .

After l time steps the model leads to a scale-free network
with N= l +m0 nodes andml edges. In simulations, we take
m0=m.

A scale-free network is inhomogeneous in nature: most
nodes have very few connections but a small number of par-
ticular nodes have many connections. It is this inhomoge-
neous feature that makes the connectivity of a scale-free net-
work error tolerant but vulnerable to deliberate attacks[10].
More precisely, the connectivity of such networks is highly
robust against random failures—that is, random removal of
nodes; yet it is extremely fragile to attacks, that is, to specific
removal of the most highly connected nodes.

We investigate cascading failures in BA scale-free
coupled map lattices withN=2000 and«=0.6. To take into
account the inhomogeneous feature of a scale-free network,
we adopt two different triggering strategies: random attack
and deliberate(degree-based) attack. In the random attack
case, an initial shock is added to a randomly chosen node. In
the deliberate(degree-based) attack case, an initial shock is
added to the node with largest degree in the network. Figures
6(a) and 6(b) plot the size of cascade in a scale-free coupled
map lattice as a function of the amplitude of the perturbation
under random attack and deliberate attack, respectively. One
can see that there is no sharp difference between random and
deliberate attacks. In each case, there exists a similar thresh-
old RBA

* . Below the threshold, at most a few nodes(less than
10 in our simulations) will be failed. As the value ofR in-
creases from the threshold, the sizeI of cascade increases
very sharply to the sizeN of the network. Furthermore, the
thresholdRBA

* is much smaller than the thresholdRc1 for a
globally coupled map lattice with the same sizeN and cou-
pling strength«. This implies that it is much easier to trigger

network collapse in a scale-free network than in a globally
coupled network. Figure 7 shows the cascading failure pro-
cess in a scale-free coupled map lattice withm=3 and R
=10.

The above results about cascading failures on the BA
scale-free networks are consistent with the recent discoveries
of Fortunato [11], who studied damage spreading for the
Krause-Hegselmann opinion dynamics on BA scale-free net-
works. Fortunato distinguished three phases in the confi-
dence bound space, corresponding to zero, partial, and total
damage, respectively. Furthermore, he found that the amount
of damage depends on the degree of the damaged node
but the thresholds for damage spreading and saturation do
not, because of the small-world effect of BA scale-free
networks[11].

FIG. 6. The size of cascade in a scale-free coupled map lattice,
triggered by adding an initial shock to an arbitrarily chosen node(a)
or a node with largest degree(b). The data are averages over 100
random realizations.

FIG. 7. Cascading failure process in a scale free coupled map
lattice with N=2000,«=0.6,m=3, andR=10, triggered by adding
an initial shockR to an arbitrarily chosen node or a node with
largest degree at tenth step.
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VI. CONCLUSION

In this work, we studied cascading failures in coupled
map lattices with different coupling topologies, including
global coupling, nearest-neighbor coupling, small-world cou-
pling, and scale-free coupling. We found that a sufficiently
large perturbation on a single node can lead to cascading
failure of all the other nodes in the network. The perturbation
threshold for the occurrence of cascading failure in a glo-
bally coupled map lattice tends to infinity in the thermody-
namic limit case. On the other hand, even a small perturba-
tion may trigger large-scale cascading failure in a small-

world or scale-free coupled map lattice in a few steps. We
hope this work might shed some new light on the analysis
and control of cascading failures in real-world complex net-
works.
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